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Viscoelastic properties of composite materials with random structure
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A model for the structure of filled polymeric composites has been developed. To simulate filler-filler and
filler-matrix interaction on a meso level, the Voronoi polyhedron representation of smallest structural elements
(filler particles) is used while fractal concepts are applied for the description of more coarse-grained structures.
An iterative method based on the ideas of renormalization group transformations is presented to calculate
viscoelastic properties such as the storage and loss modulus of the composite. The influence of frequency as
well as the properties of filler and matrix on the effective viscoelastic properties of polystyrene melt filled with
glass spheres has been elucidated in a wide concentration range. The calculations and the experiments are in
good agreement. Moreover, model calculations coincide with results of percolation theory.
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I. INTRODUCTION

The influence of filling on the rheological properties of
composites is well-known from the experimental and theo-
retical point of view in the range of small concentrations [1].
For higher concentrations, the straightforward solution of hy-
drodynamic equations is difficult and only approximate so-
lutions or numerical results are available. For the highest
concentrations, where direct contacts between the particles
dominate deformation behavior, the theoretical description is
mainly based on empirical models [1]. In general, models
based on realistic structural ideas, describing the rheological
properties of filled polymers in a wide range of concentra-
tions are missing so far. In the following, we suggest a struc-
tural model and a method for the calculation of viscoelastic
properties of filled polymers for the case of known properties
of the constituents.

Prior to the theoretical analysis for the viscoelastic prop-
erties of filled polymeric compounds, we pay attention to one
important principle simplifying the analysis, namely the cor-
respondence principle [2,3]. It states that the solution of an
elastic problem can be transformed to the solution of a vis-
coelastic problem under steady state oscillatory conditions
by replacing the elastic modulus p with the corresponding
complex modulus u”(iw)=pu'(w)+in"(w). Therefore models
applied to describe elastic materials can also be used for
viscoelastic materials on the basis of the correspondence
principle. This is the reason why we do not differentiate be-
tween both approaches.

The general theory for the effective physical properties of
heterogeneous media including elastic ones is presented in
papers [4—11]. Relying on publications which are dedicated
to the theoretical and experimental study of physical proper-
ties of heterogeneous media with random structure, one can
conclude that the prediction of elastic properties of these
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materials in a restricted concentration range is possible in
two cases [11-21].

(a) The ratios of the properties of phases z; (these
might be the ratio of the shear moduli, z, =y, (w)/ uf(w) and
the ratio of viscosities z,=7,(w)/7(w), with u"(w)
=wn(w) where subscript m corresponds to the polymer ma-
trix and f corresponds to the filler phase) vanish: z;—0.

(b) The properties of phases differ by not more than
two orders of magnitude: 1072 <z, <1.

In the first case, the prognosis relies on results from the
percolation theory [14—21] while in the second case methods
from the “effective media theory” are used [6,7,21].
Results from the percolation theory can be presented in
the following way:
MN(P_Pc)T9 3<7-<4»

P> Do (1.1)

u~(p.—p)~, 05<s<1. (1.2)
The equations describe in general the change in the effective
shear modulus w in dependence on the particle bulk concen-
tration, p, and, in particular, the abrupt change of properties
at the percolation concentration, p,., which is the result of
clustering processes for the dispersed phase components.

In compliance with the effective media theory, the shear
modulus can be presented, for example, by the Kerner equa-

tion (see, e.g., [7]):

P <DPe

p= ol (1= p)pty + (a+ p) (1 + ap) o, + (1 = p) g,
(1.3)

a=2(4-5v,)(7-5v,), (1.4)

where v, is the Poisson ratio of matrix.

Using the correspondence principle, pu;— u;(iw), and re-
lying on Kerners results, Christensen [22] gave the next for-
mula for the effective complex shear modulus of a viscoelas-
tic material:
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(1= p)u,(iw) + (a+ p) py(iw)
(1+ ap)p,(iw) + a(1 - p) py(io)”
(1.5)

w (i) = w,,(iw)

In various papers [23-36] the comparison of experimental
results with calculations from the Palierne model [32] (an
even more generalized rheological constitutive equation for
heterogeneous materials) was performed and significant dif-
ferences were observed. Thus, e.g., Palierne’s equation trans-
forms into the following equation under the condition
Zk—>0

M) (1.6)

' (iw) = M;(iw)<
I-p

which agrees neither with Eq. (1.1) nor with Eq. (1.2). More-

over, from Eq. (1.6) it follows that u"(iw)— % tends to in-

finity if the concentration tends to unity; the latter differs

significantly from the true result u"(iw) — ,u;(iw).

The effective media theory was also used for the calcula-
tion of rheological properties of liquid-liquid heterogeneous
materials (emulsion models, see, e.g., [31-33]). Calculations
presented in these (and other) papers are based on the con-
cept of homogeneous distributions of the heterogeneities.
These models are not able to account for aggregation or clus-
ter formation of inclusions and, consequently, their results
differ from those obtained by percolation theories.

In the paper of Wu er al. [29] the rheological properties of
polymeric composites were investigated in the concentration
range p —p, and the Nielsen equation, which is a generali-
zation of the Kerner equation, has been used for some com-
parisons with theory. But the Nielsen equation does not de-
scribe percolation effects either.

Efforts to describe percolation phenomena in filled rub-
bery materials were presented by Kliippel et al. Their results
can be used if z;— 0, whereas if z; is finite they can hardly
be used.

Rheological properties of filled polymeric materials are
heavily influenced by interfacial phenomena such as the for-
mation of an interfacial layer (IL) at the phase boundaries
[1]. An analysis of the IL’s properties on the viscoelastic
properties of filled polymers was given by Vignaux-Nassiet
et al. [30]. The authors introduced a finite size interfacial
layer into the Palierne model, with properties different from
the matrix. Doing so, they were able to describe their experi-
mental results satisfactorily.

Huber and Vilgis [24] performed a theoretical study on
how the aggregation of particles having interfacial layers
of different sizes influences the effective viscoelastic proper-
ties of composites. Doing so, they generalize the well-
known Einstein-Smallwood equation. The calculations yield
no quantitative but a qualitative agreement with experi-
ments in the concentration range where aggregation of par-
ticles strongly influences the viscoelastic properties of the
composites.

In general, a sufficient theory which accounts for effects
of aggregation and interfacial effects does not exist so far for
the case of viscoelastic properties for the constituents of
composites being in the range 0 <z, < 1072 and if the amount
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FIG. 1. Schema of structural changes with concentration of
Voronoi polyhedra, x: (a) x=1, (b) x<<1 and x> x, (x, is the critical
concentration of VP, which is defined in Appendix B), (c) x<1 and
x<x., and (d) x<1.

of filler is changing in a wide concentration range. In the
following we will present a method which allows one to
calculate the viscoelastic properties of filled polymeric ma-
terials with random structure of fillers taking into account the
above-mentioned requirements. Doing so, we assume that
the viscoelastic properties of the constituent phases are
known. We will show that our results agree very well with
the results of percolation theories as well as effective media
theories.

II. STRUCTURAL MODEL

Defining structural properties of a composite material
with random structure is a rather complicated task. That is
why we will introduce some simplifying assumptions. First
of all, we assume that the filler particles are spherical in
shape and uniform in size having the radius R. Second, al-
though we know that in reality particles are heterogeneous in
nature due to the formation of an interfacial layer or due to
grafted polymers to its surface, we assume that the particle is
homogeneous.

To describe the structural properties of random media
composed of a matrix and particles with mentioned proper-
ties, the Voronoi polyhedron (VP) [37] and its modifications
are used. For example, the Voronoi polyhedron was used to
describe the structure of quickly cooled liquids, metallic
glasses, and noncrystalline systems [38—40]. The VP is a
convex polyhedron circumscribed around a particle. To con-
struct a VP, we emanate from particle configuration at the
limiting filler concentration, p,. In this situation [see Fig.
1(a)] at the contact points of all the particles, we build planes
tangent to the particle surfaces and perpendicular to the radii
connecting the particle centers. The polyhedron whose vol-
ume is limited by these planes and which comprises the vol-
ume of the particle itself (which might include the volume of
an interfacial layer) and some matrix material is a VP.
Voronoi polyhedra (VPa) connected by such planes fill the
whole volume of a random medium without any gap in the
case of limiting filler concentration.
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Now, we will examine the structure of a maximally filled
polymeric material in more detail (see Fig. 1). Around each
of the particles we will form a VP. As a result, the whole
volume of the composite will be filled with VPa. The number
of faces in each polyhedron is equal to the average coordi-
nation number, N. We will designate the VP bulk concentra-
tion as x. The relationship between the filler particle bulk
concentration p and the Voronoi polyhedron bulk concentra-
tion is determined as x=p/p,, where p, is the limiting bulk
concentration of particles, which in the case of random pack-
ing of spheres amounts to p,=0,6 [41,42]. At the VP con-
centration x=1 (p=p,) the whole volume is filled with
Voronoi polyhedra.

When the particle bulk concentration (and, correspond-
ingly, the Voronoi polyhedron bulk concentration) decreases,
the structural change of the composite can be represented as
in Fig. 1 (for details also see Appendix B).

At 0<x<1, the filled polymeric composite can be repre-
sented as a random mixture of two sorts of polyhedra: the
ones with and without filler particles (see Fig. 1). The results
of the theory of percolation [16,17] are applicable to such a
mixture of polyhedra. According to this theory, at x <x, iso-
lated clusters are formed from VP; at x> x,. the infinite clus-
ter is formed from VP, where x,. is the percolation threshold.
Knowing that for three-dimensional systems (d=3), the per-
colation threshold x.=0,2, we can define the critical con-
centration of filler particles, p,, at which the infinite cluster is
formed, in the following way:

Pec=DPoXc- (21)

In general, the limit filling, p,, depends on the form of par-
ticles as well as on the way of packing and it can change
within the limits

0< py=<0.74. (2.2)

The maximum value py=0,6 corresponds to the limiting
filling of the volume with randomly distributed spheres.
Thus, taking x.=0.2, we obtain

0<p,<0.12. (2.3)

The estimations of p,. show that percolation transition in
polymeric composites can occur at filler particle bulk con-
centration p <0.12. Thus the critical concentration, p,, is not
a universal characteristic of a composite, in contrast to the
percolation threshold x,.

The determination of the effective properties of filled
polymeric composites is further divided into two stages. At
the first stage of the calculations, the elastic properties of
Voronoi polyhedra are determined, and at the second stage,
the two-component system, which consists of VPa occupied
by filler particles and those occupied by a matrix polymer, is
examined. While for the former, effective properties have to
be determined, for the latter the effective properties are those
of the matrix.
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III. STRESS TRANSFER

A. The Voronoi polyhedron’s shear modulus

The estimation of the Voronoi polyhedron shear modulus
My is a rather difficult task. The analytical dependence of the
VP effective shear modulus on its parameters can be approxi-
mately estimated using the method of integral sections
[43-46].

The Voronoi polyhedron complex shear modulus ,uf/(iw)
was obtained as (see Appendix B)

polio) pyli)
[14(i0) = g (i) Py

pylio) =2 X [[M;i(iw) — (i),

+ ,u*(iw)log ( ,u,;(iw) )}
TN i) - (i) = i)y
+ (1 =)y, (3.1)
where
3(] - 13
T =c<%) and ¢ =1.912 in the case of p;=0.6.
o

The dependence of the polymer bulk concentration in a
Voronoi polyhedron gy=1-py (py is the volumetric concen-
tration of a filler particle in a VP) on the particle bulk con-
centration p was defined as (see Appendix B)

qy=0.73-0.54p (p.<p=<po,) (3.2)

for the case py=0.6.

B. Stress transfer between Voronoi polyhedra

Connecting the Voronoi polyhedra centers at x=1 (p=p,)
we obtain the network presented in Fig. 1. Each link between
knots (contact point between two spheres or a sphere with
the matrix) may be replaced by elastic springs (or resistors in
the case of electrical analogy) of two sorts (see Fig. 2). One
has the elastic properties of VP as defined by Eq. (3.1), and
the other has the elastic properties of the matrix, u, (iw).
Generally, these links form a network of the two sorts of
springs and are distributed randomly. We will assume that
the link distribution of the network is uncorrelated, in other
words, a link in a certain position will not affect any neigh-
boring links (a case when the links are correlated might be
explored later). Thus the mechanical response of a polymeric
material to an impact may be modeled by a network with
randomly distributed springs of the two types.

IV. MODULI OF THE COMPOSITE

The effective shear modulus of the filled polymeric mate-
rial is calculated on the basis of an iterative method of aver-
aging over different particle configurations. To illustrate this
method we consider a random distribution of filler particles
in volume V [Fig. 3(a)]. Let x©) be the bulk concentration of
Voronoi polyhedra in volume V and let us divide volume V
into minimal volumes VEO) [Vio) (1937, (i=1,2...,n) [Fig.
3(b)]. At x(© <1, it is possible to identify two main configu-
rations of the particles in Vl(.()). In the first one, a connecting
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T T

FIG. 2. Definition of two sorts of connections between Voronoi
polyhedra.

set (CS) of particles is formed, in the second a nonconnect-
ing set (NCS). We will call the particles in volumes, V[(,O), in
which they form a CS, the sort one particles of the first level,
and the particles in volumes, Vgo)’ where they form a NCS,
the sort two particles of the first level.

The probability of forming a CS from the sort one par-
ticles of the first level, R(x!") is equal to the ratio of the
number of the sort one particles of the first level to the num-
ber of all the particles of the first level.

In the next step we divide volume V into minimal vol-
umes Vgl) [Vﬁl) (I)3]. We characterize volumes V;l) only by

a) b)

1-st level

o ©
o]
) The sort two particle
of the first level

The sort one
particle of the
first level 2-nd level

The sort one The sort two

particle of the particle of the

second level second level

n-th level

The sort one particle
of the n-th level

FIG. 3. Illustration of the iterative method of averaging: (a)
typical particle configuration corresponding to x(*) (the VPa are not
shown); and (b) successive coarsening of particle configuration by
averaging.
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b)

FIG. 4. Principle of modeling (a) the connected (CS) and (b)
nonconnected sets (NCS) of Voronoi polyhedra.

two signs: whether CSs are formed in VEI) from the sort one
particles of the first level, or whether NCSs are formed. The
probability of forming CSs from the sort one particles of
the second level R(xV) is equal to the ratio of the number
of the sort one particles of the second level to all the particles
of the second level.

The iteration process continues until we get an n-level
particle of sort one or two. The effective shear modulus of
the filled polymeric material is essentially influenced by two
configurations: a connected set (CS) of springs possessing
Voronoi polyhedron elastic properties allowing one to go
from one side of a specimen to the other side only over these
springs. In the case of a nonconnected set (NCS) of these
springs there are no such links.

The CS is modeled as a continuous structure having
Voronoi polyhedron properties with a polymer sphere inclu-
sion and the NCS as a continuous structure of polymer with
inclusion of a sphere having Voronoi polyhedron properties
(see Fig. 4). The elastic properties of the corresponding sets
we describe by the Hashin-Strikman formula [8,9], which
has been applied successfully in similar cases [35]. This for-
mula, which was obtained on the basis of the principle of an
additional energy minimum by means of a variational
method, allows one to determine the effective shear modulus
of connected and not-connected sets. The formula for the CS
has the following form in case of incompressibility of the
material:

(1 =), (i) = wylio)]
1+ xby (i) — pylio)]’

pes(io) = wylio) + (4.1)
where b,=2/5u,.

The formula for the NCS shear modulus can be obtained
from Eq. (4.1) by changing the indices (v to p and vice
versa) and the concentration correspondingly (x— 1—x):

[ pylio) - w,(iv)]
1L+ (1= 0)b,[uylio) - w,(iw)]’
(4.2)

M;vcs(iw) = Mjn(iw) +

where b,,=2/5u,,(iw).
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Using the lowest possible number of two different springs
connected linearly (see Fig. 2) the arrangements presented in
Fig. 1(b) correspond to the CS and the arrangement in Figs.
1(c) and 1(d) to the NCS. Similarly to Hashin and Strikmann
[8,9] we use a continuous analogon to these two sets as pre-
sented in Figs. 3(a) and 3(b) by the two upper circles with
the corresponding inclusions. Equations (4.1) and (4.2) are
used for the iterative calculation of viscoelastic properties for
the filled polymers as presented in the following. The used
iterative method was proposed in [35] to calculate the elastic
properties of an inhomogeneous isotropic medium with ran-
dom structure. Applying this method and the correspondence
principle, the calculation of the properties for a polymeric
composite can be made.

The calculation of moduli for the CS and NCS at the
k+1 stage of iteration is performed in the following way:

(1= x®) [y ylio) = pe§ (iw)]
1+ xObELuEsio) - u )]

s (i) = pefio) +

(4.3)
sz(g;l)(iw) = MNCS("*’)
OpPi0) - iiio)]
Tlea- <’<>)bmw‘k>(zw) pney(io)]’
(4.4)
where  b&=2/5pP(w), bE=2/5m (@), p(w)

= ,uv(w) is the Voronoi polyhedron complex shear modulus
and ,LLNCS((U) ,um(w) is the complex shear modulus of the
matrix.

Moreover, the concentration of Voronoi polyhedra is
changing according to x¥=R(I*1 x*-1) and xP=yx is the
Voronoi polyhedron bulk concentration.

The probability function R(l(o),xj(,o)) is equal to the prob-
ability that a set of links forms a connected set (CS) at given
1(0),x(0). It was determined as the ratio of the number of CS

configurations to the number of all configurations on the final
lattice [47]:

R(I=2,x9) = (x9)7[4 + 8x© - 14(x?)? - 40(x'?))3
+16(x)* + 288(x?)° - 655(x)° + 672(x?)7
—376(x )8 + 112(x?)° - 14(x()10]. (4.5)

The percolation threshold (the critical point) x,. according to
Eq. (4.5) is equal to 0.2085... [this number is determined as
the solution of the following equation: R(I¥=2,x@)=x0],
This way a NCS changes to a CS at x.~(0.20846.

The iteration procedure finally leads to the effective com-
plex shear modulus of the composite, u (w):

Ilim ,uz(sk)(w) =]£im ,uNCS(w =u'(w). (4.6)

The function R is approaching its final values according to
Eq. (4.7):

1, xO>y,
; (k) (k) =< 7’ ¢
l}grolc R(I™M x"Y) = {O, RO 4.7)
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log , (u+0.42)

log ,, (K'+0.4a)

log @

FIG. 5. Comparison of calculations (lines) and experiments
(points) for the dependence of (a) storage modulus and (b) loss
modulus on frequency for different filler concentrations.

The modulus u*(iw) is the modulus of the composite we
are interested in and which we compare with experiments
and explore its properties in the next paragraph.

V. DISCUSSION
A. Calculations and experiments

To compare calculations with experimental data we make
use of a data set on a polystyrene melt filled with glass
beads. For details see [48]. The storage and loss moduli of
the matrix polymer (polystyrene) are shown in [48]. The vis-
coelastic properties of the matrix can be approximated very
well by the following empirical equations:

| )_< 39957.20'* )[P] 5.1)
Bl = 04008 + 0418306 /5 '
65 053w+ 0.1804w'®
") = p 52
(@) = 1 0 008 1 0a1s30 0 G2

Furthermore, it is assumed that the filler particle shear
modulus can be described by the following relations: ,u =8
X 10°[Pa] and u/=0 [49,50]. The maximal filler concentra—
tion is py=0.6.

The comparison of our calculations with the experimental
data reveals an almost perfect fitting [see Figs. 5(a) and
5(b)]. According to the experimental data [48], the shear
modulus u'(w) of a composite shows a smooth increase
when the filler concentration p is changing from small con-
centrations to the limiting filling p,. As the comparison of the
calculation and the experiment showed [Figs. 5(a) and 5(b)],
the iterative method predicts the shear modulus of such a
composite in the whole concentration p and frequency w
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logy, ¢

log 10 W

FIG. 6. Calculations of the storage modulus u'(w) in depen-
dence on frequency for different filler concentrations p: 1—0.01;
2—0.09; 3—0.13; 4—0.15; 5—0.2; and 6—0.25.

range very well. A more detailed comparison of experimental
data and calculations of u'(w) for p=0.6 discloses system-
atic deviations in the range of smallest frequencies. We as-
sume that this deviation is due to the particle’s polydispersity
which is not encountered in our model. The presence of a
fraction of particles with sizes smaller than the average size,
which we apply as the only size of particles for the calcula-
tions, leads to a slowed down relaxation. Whether this effect
is due to the appearance of stronger or more clusters is not
known. Nevertheless, our next efforts are dedicated to the
modeling of polydispersity effects in filled compounds.

Let us consider another case, namely when there is a per-
colation leap in the concentration dependence of the shear
modulus u of a composite. We will show that the iterative
method describes such systems well enough and that the re-
sults of calculations based on the iterative method corre-
spond to the results of the percolation theory. It is to be
mentioned that the percolation properties are universal
[16—18], that is, they are correct for any inhomogeneous iso-
tropic medium with random structure.

Percolation properties in a filled polymeric composite will
show up if the rigidity of particle agglomerates (Voronoi
polyhedron shear modulus) is much higher (several powers
higher) than the rigidity of the undisturbed polymer [26].
This situation can occur, for example, when a strong adsorp-
tion layer of a polymer with properties quite different from a
matrix polymer has formed. Such a situation is known for
silica reinforced rubbers [26,51,52].

Now, when calculating the effective shear modulus of
such a composite, we consider a constant, frequency inde-
pendent Voronoi polyhedron shear modulus of uy=2
X 10%[Pa]. The modulus’ value was chosen such that the ex-
pected percolation phenomena appear in an experimentally
accessible frequency and concentration range. Shear moduli
of the polymer matrix are defined by formulas (5.1) and (5.2)
as before.

Results for the effective shear modulus u' of a composite
are shown in Fig. 6. According to the calculations, the per-
colation transition appears at @< 10~* and at a filler concen-
tration of p=0.12. According to equations given in Appen-
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3
b
=1
o
0 02 04 06 08
X X
C
2 ) 1.25 L9
15 1
1 075
3 3 05
3 os -
= » X 025
0 0
-05 -0.25

0 02 04 06 08 0 02 04 06 08
X X

FIG. 7. Dependence of x(x,w) on concentration x for four fre-
quencies: (a) w—0; (b) w=10""; (c) =10 and (d) w=10>

dix B (p.=x.p,) this concentration results from limiting
filling properties of the filler (here py=0.6) and the universal
properties of random structure (here x,=0.2) expressed by
function R(l,x) [Eq. (4.5)]. At p>0.12, a continuous rigid
framework of filler particles is formed in the composite.

To illustrate more quantitatively the percolation properties
inherent to our model we consider the following function

X(x, w):
o (x+ Ax, w)
logyo )
(0) = u (x, )
A x+Ax—-x.\ ’
log;o

X=X,

(5.3)

where x=p/py, x,=p./py. Details for the definition of differ-
ent concentrations can be found in Appendix A.

The results of corresponding calculations for three differ-
ent frequencies are shown in Fig. 7. Moreover, knowing the
function y(x,w) the determination of the scaling parameters
7and s included in Egs. (1.1) and (1.2) is possible:

7= lim x(x,w),
x—x.+0

s= lim x(x,w). (5.4)

x—x.~0
From the calculations, it can be clearly seen [Fig. 7(a)] that
for vanishing frequency (w—0) and at x— x,+0 the indices
7and s can be extracted: 0.7<s5<0.5 and 3=<7=<3.5. These
numerical results are in good agreement with the results of
the percolation theory [15-18].
Based on the calculations the conclusion can be drawn
that dependencies like Eqgs. (1.1) and (1.2) are observed at
x—x.+0:

m=x-x), x>x, w—0 (5.5)

c

with3<7<35

and
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6 2 4 61 1012 n
FIG. 8. Dependence of the storage modulus w” on the number of

iterations, n=log;, 1" /log I”).

w =l —x, 7, w—0 (5.6)

with 0.5=<s5=<0.7.

The obtained results closely correspond to percolation
theory [16—18] and are in agreement with experimental re-
sults [26,51,52].

x <X

B. Fractal properties of the composite for x —x,, ®—0

The calculations of the dependence of log;, u’ on the
iteration number n=log,, (" /log;, ¥’ are shown in Fig. 8
(x=x,-0,w—0). On scales ("<& (¢ is the correlation
length, i.e., the lattice dimension where the shear modulus '
depends on the scale /™) a heterogeneous medium behaves
like a fractal set:

p = ("),

According to our calculations (see Figs. 7 and 8), we obtain
B=29, if n<ng where P=log,u'/logl™, n;
=log &/loggly, & is the correlation distance. The points
lying on a straight line parallel to the abscissa reveal that
on these scales the composite is no longer fractal but a ho-
mogeneous medium independent from . Hence filled
polymeric materials can show fractal properties on scales
IW<g if 0—0.

(5.7)

VI. SUMMARY AND CONCLUSIONS

The model of a filled polymeric material including a
structural model has been elaborated, which allows one to
examine viscoelastic properties in a wide range of param-
eters. The concept of the Voronoi polyhedron (VP) was ap-
plied to filled polymeric materials, which allows one to de-
fine effective properties on the scale commensurable to the
dimensions of filler particles. Effective viscoelastic proper-
ties of the composite are appearing as a consequence of the
developed iteration procedure on connected and noncon-
nected sets of two sorts of VPa.

The influence of frequency and properties of phases (filler
and matrix) on the effective viscoelastic properties of com-
posite has been studied. The comparison of the calculations
and experiments showed good agreement. Moreover, the cal-
culation results coincide with the results of percolation
theory for different ratios of filler and matrix properties, z;, if
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7;— 0 and correspond to experimental data at finite values
Of L

Due to the good qualitative and quantitative agreement of
the model with experimental facts we conclude that the av-
eraging procedure on the lowest level of modeling (VP) to-
gether with the averaging of properties on the macro level is
an effective way to account for relevant effects appearing in
filled polymeric materials. Our future efforts are directed to
the consideration of polydispersity and interfacial effects in
these compounds using the presented procedure.
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APPENDIX A

The change from the isolated clusters of Voronoi polyhe-
dra to the infinite one occurs at the Voronoi polyhedron bulk
concentration x,, i.e., x equals the percolation threshold x,
=0,2 [15-17]. Taking into account that x=g p, from

x|p=p0:1 we obtain g=1/py, that is, x=p,/p,, where p; is
the limiting filling bulk concentration.

Knowing that the percolation threshold x,. is a universal
constant we can define the particle bulk concentration p,. at
which the percolation change from the isolated clusters of
Voronoi polyhedra to the infinite cluster of Voronoi polyhe-
dra occurs p.=x.pg

The limiting filling concentration p, depends on the inter-
action between the polymer and the filler particles and may
generally vary within the following limits: 0.1<p;=<0.6.
Thus if x,.=0.2 then 0.02<p,=<0.12, that is, at the particle
bulk concentration p=p, the change from isolated clusters to
the infinite cluster of Voronoi polyhedra occurs. The maxi-
mum value py=0.6 corresponds to the maximal filling with
randomly distributed spheres (the polymer thickness between
the particles at their contact points is zero Al~0 [41].

The polymer bulk concentration gy=1-py in a Voronoi
polyhedron is py=V,/Vy, where V, is the volume of a filler
particle, and VY, is the volume of a Voronoi polyhedron. The
filler bulk concentration equals p=V,/(V;+V,,) where V,, is
the polymer volume in a composite. By the increase of the
particle bulk concentration p the density of the cluster of
densely packed particles is increased, and consequently, the
average coordination number increases as well. Thus the av-
erage coordination number equals approximately 2 at the
filler particle concentration p close to the critical concentra-
tion p., and approximately 7 at p close to py=0.6. When the
particle bulk concentration p increases, the polymer bulk
concentration in a Voronoi polyhedron g,=1-p, will de-
crease, and so will the thickness of a polymer layer at par-
ticle contact points.

APPENDIX B

Let us consider PV as “a sphere in a cubic cell” [Fig. 9(a)]
and estimate its shear modulus in a given direction. At the
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c)

yed 0

FIG. 9. Simplified presentation of a Voronoi polyhedron as (a)
sphere in a cube and (b) sphere in a cylinder. (c) presents a section
through a sphere in a cylinder.

beginning, we define the shear modulus w; of a cylindrical
body [Fig. 9(b)]. The essence of the method of integral
cuts is that an inhomogeneous body [Fig. 9(b)] is cut into
prisms with infinitely small bases ds=pdpd¢ and altitudes of
L=1,(p)+L,(p).

In this case, the shear modulus of a cylindrical body
equals [46]

1
My =2 f ¥(p)pdp, (B1)
0

where

w1—/;»2+1—mv1—pz>‘1 C<3(Pv))l/3
l 7T1=

Yp) = ( P P =

(B2)

c=L/R, L=(Vy)', Vy is the Voronoi polyhedron volume; R
is the filler particle radius; py=V;/Vy, 1-Vy is the volume of
the polymer in the Voronoi polyhedron and [,(p)/R
=\ 1-p% L(p)/R=1-m\1-p~

After integrating Eq. (B1) we obtain
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= Hmky
M= )
(g = )™
Y
X (Mf—Mm)771+Mf10g< )]
M= (,U«f— o) T
(B3)
Taking into consideration Eq. (B3), the Voronoi polyhedron
shear modulus in a given direction (see Fig. 9) can be de-
fined as

Bombs

My =
(= ),

X (Mf— ) T + My 10g<—'uf—)}
M= (Mf— ) T
(B4)

On the basis of the correspondence Erinciple, the Voronoi
polyhedron complex shear modulus u(iw) was obtained as

+ (1 - 7Tl)lu“m'

Poli®) iy (i)
(i) = (i) Py

plio) =2 X [[M;(iw) — pplie)]m,

) ]
iw)l € * ¥
+ pplio) 0g10( pslio) = [puslio) - w,(io)]m

+(1 =) e (B5)

In Egs. (B4) and (B5) ¢=L/R is a linear dimension of VP
measured in radii of filler particles R. If the coordination
number of a filler particle in VP is N=6, then ¢=2; if N
>6, c<2,if N<6, ¢>2. At the limiting filling py=0.6 the
constant ¢ amounts to c=1.912.

The number of faces in the Voronoi polyhedron depends
on the average coordination number N of filler particles in
the cluster. According to the experimental data on the chaotic
packing of spheres of equal dimensions [42] we can define
N=17.4(py)*?. In the cluster of filler particles which con-
nects opposite sides of the sample for the first time the av-
erage coordination number is approximately equal to 3
[14-18]. In this case (N=3), according to the equation N
=17.4(py)*?, we obtain gy|y_3=0.7 (gy=1-py). The poly-
mer bulk concentration in the Voronoi polyhedron at the lim-
iting filling is py=p,. Assuming that p,=0.6 and that the
density of the cluster is changing linearly with p, we obtain

qv=0.73-0.54p (p.<p<py ). (B6)
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